upper semicontinuous function - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

upper semicontinuous function - перевод на русский

PROPERTY OF FUNCTIONS WEAKER THAN CONTINUITY
Semicontinuous; Semicontinuity; Semi-continuous; Lower semi-continuous; Upper semi-continuous; Lower semicontinuous; Upper semicontinuous; Semi-continuous function; Semi-continuous mapping; Semicontinuous function; Upper-semicontinuous; Upper semicontinuity; Lower semicontinuity; Upper semi-continuity; Lower semi-continuity
  • A lower semicontinuous function that is not upper semicontinuous. The solid blue dot indicates <math>f\left(x_0\right).</math>
  • An upper semicontinuous function that is not lower semicontinuous. The solid blue dot indicates <math>f\left(x_0\right).</math>

upper semicontinuous function      
полунепрерывная сверху функция
lower semicontinuity         

математика

полунепрерывность снизу

lower semi-continuous         

общая лексика

полунепрерывный снизу

Определение

upper school
¦ noun
1. (in the UK) a secondary school for children aged from about fourteen upwards.
2. the section of a school comprising or catering for the older pupils.

Википедия

Semi-continuity

In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f {\displaystyle f} is upper (respectively, lower) semicontinuous at a point x 0 {\displaystyle x_{0}} if, roughly speaking, the function values for arguments near x 0 {\displaystyle x_{0}} are not much higher (respectively, lower) than f ( x 0 ) . {\displaystyle f\left(x_{0}\right).}

A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x 0 {\displaystyle x_{0}} to f ( x 0 ) + c {\displaystyle f\left(x_{0}\right)+c} for some c > 0 {\displaystyle c>0} , then the result is upper semicontinuous; if we decrease its value to f ( x 0 ) c {\displaystyle f\left(x_{0}\right)-c} then the result is lower semicontinuous.

The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899.

Как переводится upper semicontinuous function на Русский язык